
fieldmarshal

Stanis Trendelenburg

May 01, 2021

CONTENTS:

1 API Reference 1

2 Indices and tables 5

Index 7

i

ii

CHAPTER

ONE

API REFERENCE

fieldmarshal.struct(*args, **kw)
Wrapper around attr.s.

Sets slots=True and auto_attribs=True. All other arguments are forwared to attr.s.

fieldmarshal.field(name=None, omit=False, omit_if_none=False, marshal=None, unmarshal=None,
**kw)

Wrapper around attr.ib that accepts additional arguments.

Arguments that control marshalling are saved as an Options object in the fields metadata under the “fieldmar-
shal” key. See Options for the meaning of these parameters.

class fieldmarshal.Hook(fn: Any, takes_args: bool = True)
Container for marshal or unmarshal hooks.

Parameters

• fn (callable) – Marshal hook

• takes_args (bool) – Whether or not fn takes additional arguments

When takes_args is True (the default), additional arguments will be passed to the hook. The type of
arguments depends on the type of hook. See Registry.add_marshal_hook() and Registry.
add_unmarshal_hook() for details.

class fieldmarshal.Options(name: str = None, omit: bool = False, omit_if_none: bool = False,
marshal: Any = None, unmarshal: Any = None)

Field options control how a field is marshalled/unmarshalled.

Parameters

• name (str) – Rename the field when marshalling/unmarshalling. Useful for example for
JSON attribute names that are not valid Python identifiers.

• omit (bool) – Ignore the field for the purpose of marshalling/unmarshalling. The field
value will neither be read nor written to. The field should also have a default value for the
class to support unmarshalling.

• omit_if_none (bool) – Omit the field when marshalling if it’s value is None. When
unmarshalling, the field will be read as normal.

• marshal (callable) – A function to call to marshal the contents of this field. The
function will be passed the field value as its only argument. This hook overrides other
marshal hooks registered for the field’s type.

• unmarshal (callable) – A function to call to unmarshal data for this field. The func-
tion will be passed the data being unmarshalled as its only argument. This hook overrides
other unmarshal hooks registered for the field’s type.

1

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

fieldmarshal

For fieldmarshal to recognize these options, put the object into the field’s metadata dict under the
“fieldmarshal” key, or use the field() helper in place of attr.s.

class fieldmarshal.Registry
Create a registry instance.

A registry is used for marshalling and unmarshalling objects, and for registering hooks for types that are not
handled natively.

add_marshal_hook(type_, fn)
Add a custom marshal implementation for a type.

The hook can either be a function that takes one argument (the object being marshalled), or a Hook object,
which can be used to opt-in to receive the registry instance as an additional argument.

The hook should return a JSON-compatible object. The hook will be called when an object of type type_
is encountered when marshalling. The hook will also be used for instances of subclasses of type_, unless
a more specific hook can be found.

add_unmarshal_hook(type_, fn)
Add a custom unmarshal implementation for a type.

type_ can be a class or a concrete type from the typing module, such as Union[list, str]. The
hook can either be a function that takes one argument (the object being unmarshalled), or a Hook object,
which can be used to opt-in to receive the type the object is being unmarshalled to and the registry instance
as additional arguments. The type passed this way is not necessarily the type the hook was registered for
(it could be a subclass, for example).

The hook will be called when data needs to be marshalled to an object of type type_. If type_ is a class, the
hook will also be used for unmarshalling to subclasses of type_, unless a more specific hook can be found.

clear_cache()
Clear all caches of the registry.

This should not be necessary unless classes are modified at runtime.

lookup_marshal_impl(cls)
Return the marshal implementation objects of type cls.

lookup_unmarshal_impl(cls, type_hint)
Return the implementation and resolved type for unmarshalling data of type cls to an object of type
type_int.

The resolved type is the same as type_hint, except for union types, where it is one of the members of the
union.

marshal(obj)
Marshal an object to a JSON-compatible data structure.

The resulting data structure contains only objects of type list, dict (with string keys), int, float,
str, bool or NoneType and can be converted to JSON without further modifications.

Raises MarshalError if an object is encountered that cannot be marshalled.

The reverse operation is unmarshal().

marshal_json(obj)
Marshal an object to a JSON string.

Like marshal(), but converts the result to JSON.

unmarshal(obj, type_hint)
Unmarshal an object from a JSON-compatible data structure.

2 Chapter 1. API Reference

https://docs.python.org/3/library/typing.html#module-typing

fieldmarshal

The data structure must contain only objects of type list, dict (with str keys), int, float, str,
bool or NoneType, such as returned by marshal().

type_hint specifies the type of object to create. This can be a class or a concrete type from the typing
module, such as List[int].

Raises UnmarshalError if the data cannot be unmarshalled to the desired type.

The reverse operation is marshal().

unmarshal_json(data, type_hint)
Unmarshal an object from a JSON string.

Like unmarshal(), but accepts a data in JSON format.

fieldmarshal.marshal()

Standalone version of Registry.marshal() that uses the default registry.

fieldmarshal.marshal_json()

Standalone version of Registry.marshal_json() that uses the default registry.

fieldmarshal.unmarshal()

Standalone version of Registry.unmarshal() that uses the default registry.

fieldmarshal.unmarshal_json()

Standalone version of Registry.unmarshal_json() that uses the default registry.

3

https://docs.python.org/3/library/typing.html#module-typing

fieldmarshal

4 Chapter 1. API Reference

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

5

fieldmarshal

6 Chapter 2. Indices and tables

INDEX

A
add_marshal_hook() (fieldmarshal.Registry

method), 2
add_unmarshal_hook() (fieldmarshal.Registry

method), 2

C
clear_cache() (fieldmarshal.Registry method), 2

F
field() (in module fieldmarshal), 1

H
Hook (class in fieldmarshal), 1

L
lookup_marshal_impl() (fieldmarshal.Registry

method), 2
lookup_unmarshal_impl() (fieldmarshal.Registry

method), 2

M
marshal() (fieldmarshal.Registry method), 2
marshal() (in module fieldmarshal), 3
marshal_json() (fieldmarshal.Registry method), 2
marshal_json() (in module fieldmarshal), 3

O
Options (class in fieldmarshal), 1

R
Registry (class in fieldmarshal), 2

S
struct() (in module fieldmarshal), 1

U
unmarshal() (fieldmarshal.Registry method), 2
unmarshal() (in module fieldmarshal), 3
unmarshal_json() (fieldmarshal.Registry method),

3
unmarshal_json() (in module fieldmarshal), 3

7

	API Reference
	Indices and tables
	Index

